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ABSTRACT

The essence of this AFOSR project is to investigate the structure, composition,
mode of attachment and reactivity of the molecular species which form at the
surfaces of metals in contact with fluids. Progress to date includes advances in
investigative technology, 110 scientific articles, and useful findings as follows: A
series of new findings, advances in investigative technology and 105 scientific
articles have occurred thus far. These include (i) determination of molecular
orientations and modes of attachment at electrode surfaces; (ii) demonstration that
mode of surface attachment affects electrochemical reactivity; (iii) exploration of
the structure and composition of electrodeposited metal monolayers and thin-films;
(iv) investigation of the nature of the species formed at electrode surfaces in ionic
solutions; (v) adaptation of high-resolution electron energy-loss spectroscopy
(!-IREELS) to measurement of vibrational spectra of species adsorbed at electrode
surfaces; (vi) systematic HREELS, Auger and electrochemical studies of families
of adsorbates, including acids, alcohols, alkenes, amines, mercaptans, phenols and
pyridines; (vii) demonstration of the stability of chemisorbates in vacuum; (viii)
development of techniques for measurement of complete Auger emission angular
distributions potentially useful for structure probing of solid surfaces; (ix)
development of an infrared (IR) reflectance spectrometer capable of recording the
vibrational spectra of typical adsorbed organic molecules; and (x) studies of the
interaction of the polar solvent acetonitrile with solid electrode surfaces.



L REPORT OF RESEARCH

Briefly, this AFOSR-funded research project has explored molecular
orientation, bonding, and reactivity at electrode surfaces, investigated the structures
of electrodeposited metallic monolayers, observed the electrochemical reactivity of
adsorbed molecular species, characterized surface layers formed by adsorption of
ions, and examined adsorbed molecular species at electrode surfaces by means of
AES, HREELS, LEED, and related techniques. The results of these investigations
are described in 110 publications (listed in Section II).

A. Motivations for Research in Surface Electmchemistry
Before reporting the results of our research on the electrochemistry and

spectroscopy of metal surfaces (June 1, 1990 - April 30, 1993), let us reflect on the
basic reasons for making studies of this type. There is a need for direct methods
by which to detect, identify, and quantitate the surface atomic, ionic and molecular
layer which controls the practical behavior of metals in vital situations such as
bonding of metals, protection of metal surface finish, lubrication of metal surfaces,
electrochemical energy storage, cleaning of metallic materials, and fabrication of
metallic/semiconductor thin-film electronic devices and sensors. There is also a
need for knowledge regarding the chemical reactions which occur between
important classes of chemical substances and various material surfaces. Such
information is vital to design of material handling processes and devices, batteries,
electronic microcircuits, composite materials, device fabrication procedures, high
performance lubricants, protective coatings and other surface-related practical
development projects. Accordingly, we are developing methods, instrumentation,
and software for probing of electrode surface structure by means of LEED and
Auger spectroscopy, investigating surface molecular structure and bonding by use
of HREELS and IR spectroscopy, and exploring surface electrochemical reactivity
by means of cyclic voltammetry and chronoamperometry. With these methods we
can now detect, identify, and quantitate any substance on any surface in any
practical amount. Our latest findings are summarized below and in the publications
listed in Section II.

AES = Auger Electron Spectroscopy
HREELS = High Resolution Electron Energy-Loss Spectroscopy
LEED = Low-Energy Electron Diffraction



B. Molecular Electruchemistry at Metal Surfaces
Several important families of organic compounds have been explored with

respect to their chemical and electrochemical reactivity towards Pt and Ag single-
crystal surfaces (publications 133, 139, 141, 142-144, 146, 147, 151, 158, and 182,
listed in Section 11). Powe-iful new methodology was developed in order to make
such determinations possible for the first time. Compounds were chosen with regard
to their appropriateness for exploring various important surface chemical and
electrochemical processes. Methods, rationale, results and implications are
summarized below and in the publications.

Bipyridyls, methyl-pyridines and bipyridyl carboxylic acids were studied
(133) in view of carlier results for pyridine carboxylic acids (125) to explore the
influence of steric hindrance at the ring nitrogens, which are predominantly
responsible for the chemisorption of such compounds at Pt electrodes (125, 133):

N CH3  H3C N CH3

2MPY 26DMPY

22BPY 33BPY 44 BPY 24BPY

0
(C5j-K NZ-

2PPY 3PPY 4PPY 26DPPY

H02  CH3 H2NCO 2HHoýC _ CHO HOCH
N N N

4M4C 44DC 55DC

C02H
HO2C C0 2 H

HO2 C 0 0 CO 2 H HO 2C-?--/\CO2H

N H0 2C

4455 TC 22DCBP 44DCBP
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These are 2,2'-bipyridyl (22BPY); 2,4-bipyridyl (24BPY); 3,3'-bipyridyl (3 3BPY);
4,4'-bipyridyl (44BPY); 2-phenylpyridine (2PPY); 3-phenylpyridine (3PPY); 4-
phenylpyridine (4PPY); 2,6-diphenylpyridine (26DPPY); 2-methylpyridine (2MPY);
and 2,6-dimethyl-pyridine (26DMPY). Carboxylic acid derivatives (supplied by
Professor C. Michael Elliott, Colorado State University) were studied to explore the
interactions between carboxylate moieties and the Pt( 111) surface: 2,2-
biphenyldicarboxylic acid (22BPDC); 4,4'-diphenyl-dicarboxylic acid (44BPDC);
2,2'-bipyridyl-4,4'-dicarboxylic acid (44DC); 2,2'-bipyridyl-4-methyl-4'-carboxylic
acid (4M4C); 2,2'-bipyridyl-5,5'-dicarboxylic acid (55DC); and 2,2'-bipyridyl-
4,4',5,5'-tetracarboxylic acid (4455TC). Packing densities (moles adsorbed per unit
area) were measured by means of AES. Electrochemical reactivity of the
chemisorbed layer was explored by means of CV. Vibrational modes of the surface
layer were observed by means of HREELS. Long-range order of the Pt(l 11)
substrate surface and adsorbed layer was checked by means of LEED. Compounds
having an unhindered pyridyl ring nitrogen are chemisorbed with the ring system
nearly perpendicular to the surface (2MPY; 33BPY; 44BPY; 2,4-DPY; 3PPY;
4PPY). However, chemisorption with the rings parallel to the surface occurred for
compounds having only hindered ring nitrogen atoms (26DMPY; 26DPPY) or no
aromatic nitrogens at all (22BPDC; 44BPDC). Chemisorption with one ring
perpendicular and the other parallel occurred with the compounds having one
hindered and one unhindered ring-nitrogen (2PPY; 228PY; 4M4C; 44DC; 55DC;
4455TC). Vibrational frequencies observed by HREELS correspond to frequencies
observed by FTIR for the unadsorbed compounds, such that assignment of the
HREELS spectra can be made rather easily with reference to standard spectra. All
of the adsorbed bipyridyl carboxylic acids react to at least some extent with KOH.
In contrast, the adsorbed biphenyl carboxylic acids are relatively inert.
Chemisorption of the bipyridyl carboxylic acids at relatively positive electrode
potentials (0.4V vs. Ag/AgCI) results in chemical interaction between the
carboxylate groups and the Pt surface, as evidenced by lower intensities and
frequencies of vibrations due to O-H and C=O stretching, and aromatic CC modes.
As expected, the biphenylcarboxylic acids are evidence of chemisorption with the
rings parallel to the surface and strong interaction between the carboxylate moieties
and the Pt surface at all electrode potentials studied. Chemisorption of an aromatic
ring parallel to the Pt surface strongly activates the electrochemical oxidation
process, relative to the perpendicular orientation which is relatively inert.

Multinitrogen heteroaromatics adsorbates and some carboxylic acid
derivatives have been studied at Pt(l 11) surfaces in contact with aqueous
electrolytic solutions (139) in order to explore the surface interactions of multiple
aromatic ring nitrogens: pyrazine (PZ); pyrimidine (PM); pyridazine (PZ); triazine
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(TZ); 2-pyrazine carboxylic acid (PZCA); 2,3-pyrazinedicarboxylic acid (23PZCA);
and 4-pyridazinecarboxylic acid (4PDCA):

PZ PM PD TZ

PZCA 23 PZDCA 4 PDCA

Each chemisorbs at Pt(1 11), with the notable exception of TZ. Data from AES,
HREELS, LEED and CV indicate that these adsorbates are oriented with the ring
approximately perpendicular to the Pt surface (75-85' ring-to-surface angles). The
adsorbed layer is lacking in long-range order, although the Pt surface remains
ordered during aromatic adsorption. Only one of the ring-nitrogens chemisorbs to
the surface in each instance. Interaction of the carboxylate moieties with the surface
is potential-dependent.

Terminal alkenols have been studied (141) with respect to chemisorbed state
and electrochemical reactivity at a Pt(l 11) electrode in aqueous solution as a
function of aliphatic chain length:

CH 2 = CH-(CH 2)n-OH (n = 1, 2, 3, 4 and 9).

Chemisorption of these compounds to Pt is primarily through the C=C double-bond
(HREELS) rather than the OH moiety. Regardless of chain-length (n = I to 9) each
alkenol molecule occupies an area similar to that of the smallest compound in the
series, 2-propene-l-ol (PPEOH, "allyl alcohol"), indicating that the aliphatic chain
and OH moiety are pendant. The OH is in contact with the Pt surface only for
PPEOH. An O-H stretching (3354 cm'l) band was detected by HREELS only for
adsorbed 3-butene-l-ol (BTEOH). Evidently, the OH stretching band is strongly
perturbed by intermolecular hydrogen-bonding for PTEOH (n = 3), HXEOH (n =
4), and UDEOH (n = 9), and by interaction of OH with the Pt surface for PPEOH.
Measurements by AES and chronocoulometry of the average numbers of electrons
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transferred (n.,) in electrochemical oxidation of each adsorbed alkenol molecule
indicates that oxidation takes place almost exclusively at the C=C double-bond and
the one adjacent C atom (that is, at the three C atoms closest to the Pt surface).

Terminal alkenes, CH 2 = CHCnH 2n.+ (where n = 0, 1, 2, 3, 4, 6, and 8) have
been studied likewise (142). The corresponding alkanes are not chemisorbed from
aqueous solutions onto Pt(I 11), at least under the conditions of these experiments
(40). Molecular packing densities measured by means of AES suggest that in the
average molecular orientation of chemisorbed terminal alkenes the C=C moiety is
parallel to the Pt surface and the alkyl chain is pendant, although further research
on this point would be advisable. HREELS spectra indicate that the C=C bond is
preserved in some or all of the adsorbed material for each of the alkenes studied.
As for the alkenols, electrochemical oxidation of the adsorbed alkene layer in
aqueous electrolyte involves primarily the C=C moiety and one adjacent carbon
atom.

Chemisorption of 2-pyridinethiol (2PyT) and 4-pyridinethiol (4PyT) at
Ag(l 11) electrode surfaces has been studied as a function of electrode potential
(147). A motivation for this study was to observe the vibrational spectra of pendant
pyridyl rings indirectly attached to an electrode surface. Attachment of 2PyT and
4PyT to the Ag(l 11) surface at electrode potentials less than about -0.2V (vs.
Ag/AgCI) occurs predominantly by dissolution of the sulfhydryl hydrogen and
formation of a S-Ag bond. HREELS spectra following adsorption below about -
0.4V closely resemble the IR spectra observed for unadsorbed 2PyT and 4PyT.
However, at potentials more positive than 0.OV, a coupling reaction occurs between
adsorbed and dissolved mercaptopyridines to form a bimolecular layer; this
coupling reaction is most noticeable for 4PyT. The adsorbed layers exhibit long-
range order readily detected by means of LEED. Layer structure is potential-
dependent (detaib, are given iai ref. 147). The pyridyl ring is perpendicular to the
Ag( 111) surface and the packing density is essentially constant at all concentrations
studied (10'5 M to 0.2 M).

Related studies of mercaptans have explored the adsorption behavior of this
important family of adsorbates at Pt( I1) and Ag( 11l) for a representative series
of molecular classes and structures: thiophenol (TP); benzylmercaptan (BM); I-
propanethiol (PT); 2-mercaptoethanol (ME); 2-aminoethane thiol (AET); 2-
mercaptoethane sulfonic acid sodium salt (MES); pyridine (PYR); pyridine-d5
(PYR-d5); and (3-pyridyl)-hydroquinone:
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H H

H* H3  9H NH2
4,.H2 cH2 cH2

H H .* .CH 2  cH2  cH2
SH HSCH 4H SH SH

TP BM PT ME AET

H

SO No+ HHO3 H D H

0H 2  OH

SH HI H 0 N HN H

MES PYR PYR-D 5  3PHQ

AES and HREELS data indicate that all of these mercaptans are attached to Pt(l 11 )
and Ag(l 11) surfaces primarily through the S-atom with dissociation of the
sulfhydryl hydrogens, the remainder of the molecule being pendant. Packing
densities (AES) are in close agreement with theoretical limiting packing densities
based upon molecular models. HREELS spectra of the adsorbates display the same
vibrational frequencies as the IR spectra of the unadsorbed compounds, indicating
retention of molecular framework in the adsorbed state. The pyridines (PYR; PYR-
d5; 3PHQ) chemisorb at Pt(l 11) but not at Ag( 11). These mercaptans exhibit
noticeably greater long-range order at Ag(1 11) than at Pt(1 11).

Saturated alcohols have been studied at Pt( 111) electrodes with respect to the
nature and electrochemical reactivity of the adsorbed species (158):

OH
I

CH 3 OH CH 3 CH 2 OH CH 3CH 2CH 2 0H CH 3CHCH 3 CH 3 (CH 2 )2 CH 2OH

MeOH EtOH PrOH 2PrOH BuOH

OH CH 3  CH 3 CH2
II I

CH 3 CHCH 2CH 3 CH 3 CH 2 CHOH CH3 CHOH (CH 3 )3 COH CH3 (CH 2 )4 CH2OH

2BuOH R2BuOH S2BuOH tBuOH HxOH

&-OH CH 3 (CH 2 )5 CH 20H HOCH 2 (CH 2 )2 CH20H HOCH2 (CH 2 )4 CH 20H

CyOH HpOH Bu(OH) 2 Hx(OH) 2
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Represented by this selection of alcohols are: a range of alkyl chain lengths
(MeOH, EtOH, PrOH, BuOH, HxOH, HpOH); branching adjacent to OH (2PrOH,
2BuOH, t-BuOllJ, chirality adjacent to OH (R2BuOH, S2BuOH); influence of an
alkyl chain -djacent to OH (CyOH); and the presence of two OH moieties
[Bu(OH) 2, Hx(OH) 2]. Each of these alcohols chemisorbs at Pt(I 11) from aqueous
fluoride electrolytes. Conditions of these experiments were: pH = 4 (KF/HF);
electrode potential, -0.1 V vs. Ag/AgCI; alcohol concentration, 0. 1 M or saturation,
whichever is smaller. Surface attachment of these saturated alcohols is through the
oxygen atom, with probable involvement of the adjoining carbon atom. The
aliphatic chains or rings are in contact with the Pt surface for most of these
alcohols; the exceptions are Hx(OH) 2, for which the alkyl chain and one OH is
pendant, and t-BuOH, which has a pendant t-Bu moiety. Short-chain alcohols such
as MeOH, EtOH, PrOH, 2PrOH, BuOH and Bu(OH)2 undergo partial
decomposition to form an adsorbed layer consisting primarily of CO and an
alkoxide. Electrochemical oxidation of these chemisorbed saturated alcohols takes
place primarily at the carbon atom adjacent to the surface-attached alcohol oxygen
atom(s).

Methane electro-oxidation at Ru(001) electrodes in aqueous electrolytes has
been studied (182) in order to seek the causes for reported potent catalysis of
methane oxidation by Ru electrodes. Various surface pretreatment procedures were
investigated with emphasis on the resulting state of the Ru surface and the rate of
oxidation of methane. Immersion of Ru(001) into pure water at open circuit forms
a layer of adsorbed hydrous oxides having an ordered (2 x 2) structure (LEED,
HREELS). Anodization of Ru(001) in IM HCIO 4 produces an ordered (1 x 1) film
of RuO/OH consisting of several atomic layers (AES, HREELS, LEED), which is
not removed by electrolysis at negative potentials near the onset of hydrogen
evolution. Electrodeposition of Ag in submonolayer, monolayer and multilayer
amounts with or without the O/OH overlayer produces a continuous Ag film
lacking in long-range order. Under the present conditions, namely surfaces of
Ru(001) with or without O/OH and/or Ag overlayers in aqueous electrolytes, the
faradaic current due to oxidation of methane is generally rather small (less than
SlpA/cm ). Evidently, the potent catalysis reported by various workers results

primarily from specific details of the surface preparation, oxidation rate
measurements, and calculations which have not yet been repeated under well-
defined conditions; more research will be required.

C. Auger Emission Angular Distributions
Auger electron emission angular distributions have been measured with

relatively high precision over virtually the complete range of angles of emission for



a variety of well-characterized electrode surfaces (135, 148, 154, 159, 161, 164,
166, 167, 170). The long-term motivation for this work is to perfect a method by
which to probe the structures of electrode surfaces and of adsorbed atomic, ionic,
and molecular layers to a depth of several atomic layers. Steps along the way to
this goal are: to measure the Auger angular distributions with sufficient precision,
accuracy, angle range, angle resolution and energy resolution that the features of
the distributions can be clearly visualized and quantified (this step includes
development of innovative instrumentation and software); to measure distributions
for a series of "reference" surfaces which have been characterized by means of
LEED, STM, X-ray crystallography and HREELS; to develop innovative software
by which to display, analyze and evaluate the data; to compare the computer-
generated predictions of various published theories with the experimental data for
well-defined surfaces; and, guided by experiment, to evolve a practical quantum
mechanical theory for use in deducing surface structures from measured
distributions.

We have measured complete Auger emission angular distributions for a
variety of samples:

Ag( 11) at kinetic energy, KE = 15, 20, 25, 30, 35, 40, 45, 49, 55, 60, 65,
81, 153, 358, and 2000 eV (156, 166);

* Pt(111) at KE = 65, 161, 252, and 1968 eV (152);
* W(100) at KE = 52, 178, 350, and 1760 eV (178);
* Pt(l 11)(13 x -[3)R30°-1, Pt(l 11)(1[7 x f'7)R19.1°-I and Pt(ll 1)(3 x 3)-I at

KE = 65, 161, 252, and 1968 eV (Pt) and KE = 518 eV (iodine) (167, 170,
179);
AI(100) at KE = 64 and 1388 eV (Al) (175), and at intervals of about 50 eV
from KE = 10 to 1500 eV (188);

* Metal dichalcogenides, such as 1T-TaS 2 (180);
• Bi2Sr2CaCu 20 8 single-crystal high TC material at KE = 289 eV (Ca), 516

eV (oxygen), and 920 eV (Cu) (189);
SiC epitaxial thin-films grown on Si(100) at KE = 268 eV (C), and 86 and
1605 eV (Si) (185);
Ag thin films consisting of 1, 2, 3, ..., 10, 20, 50 and 100 monolayers
electrodeposited epitaxially onto Pt( 111) (157).

Results for monoatomic layers of independently determined structure indicate
that signal minima are observed along the principal interatomic directions even at
KE greater than 500 eV. Distributions from single-crystal surfaces display minima
along interatomic directions at KE less than 100 eV, and maxima along the
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directions of open channels .vhich are also the interatomic directions). Elastic
scattering angular distributions always contain features attributable to electron
channeling; the locations of these features are the same as those in Auger
distributions at comparable energies. Angular distributions from single-crystal
substrates contain no new features when measured in the presence of an ordered
adsorbed atomic layer; attenuation of substrate intensity by the monolayer is
essentially isotropic, evidently due to averaging of the angular variations over the
myriad emitter-scatterer geometric relationships for such samples. Distributions
from ordered atomic bilayers reveal that the Auger signal from the underlayer is
attenuated anisotropically and is not increased along any direction of emission.
Sharply delineated Auger distributions are obtained from all of the wide variety of
ordered surfaces studied thus far.

After our initial results of this type were published, several workers
expressed surprise at the results, which they perceived to be in conflict with
quantum mechanics and therefore incorrect (160, 162). However, subsequent work
in our laboratories and elsewhere has confirmed the correctness of our experimental
findings (171, 175).

The remaining controversy now seems to revolve around whether the
experimental trends which we have unveiled can be explained and represented by
use of existing models and algorithms, or whether a new theoretical approach is
required. Several wo -ers are now attempting to develop theoretical models to
explain our results. Guided by a growing body of experimental data, we too are
developing a theoretical model and computational code which include both elastic
scattering and inhomogeneous inelastic scattering. We seek strict quantitative
agreement between the theoretical model and the experimental distributions for
samples the structure of which are known independently from LEED, STM and X-
ray diffraction. Among the challenges: description of the nature of the source
wave; representation of the differential and radial cross-sections of electron
scattering versus Auger electron KE; rigorous description of the elastic and inelastic
scattering processes; and description of channeling and other multiple-scattering
effects.

D. Well-Defined Infnrard Detector Surfaces
Preparation of well-ordered mercury cadmium telluride (MCT) infrared-

sensitive surfaces has been demonstrated for the first time (168). MCT is an
important material, widely used by the US Air Force as the photoconductive pn-
junction heart of the infrared (IR) detector devices employed for infrared cameras,
telescopes, weapons guidance systems, and night-vision equipment. Preparation of
well-ordered MCT surfaces is important because it provides the high-quality thin-
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film junctions needed for fabrication of the next generation of more sensitive and
reproducible IR detectors and arrays. Our collaborator, a leading manufacturer of
IR sensors [Santa Barbara Research Center (SBRC) division of Hughes Aircraft
Company] reports ten-fold improvements in performance and thirty-fold increases
in the yield of useful devices as a result of improvements in thin-film preparation.

In these studies a single-crystal of Hg0 .8Cd 0.2Te, grown at SBRC, was
oriented by X-ray reflection and annealed and polished such that the parallel main-
faces of a disk are metal-terminated (I II-A) and Te-terminated (11 I-B) surfaces.
These surfaces were characterized by AES, HREELS, LEED and CV at each stage
of etching with methanolic bromine solution and Ar+ ion-bombardment. After
polishing, both surfaces were found to be contaminated with C and S-containing
impurities and deficient in Cd; the surface was disordered. This stage was the usual
starting point for fabrication of commercial IR devices. Etching decreased the S-
content but did not improve surface ordering. Ion-bombardment removed C and S,
restored Cd to expected levels, but left the surface disordered and deficient in Hg-
A special appendage was constructed by which the MCT sample could be annealed
in Hg vapor and Ar at controlled partial pressure of Hg against an ultra-high
vacuum background. After annealing, the (I ll-A) and (111 -B) surfaces displayed
well-ordered structures (LEED) having the expected stoichiometry (AES) and
vibrational bands (HREELS). The (I lI-B) face tends to facet during annealing,
while the (111 -A) face forms a simple (2 x 2) surface lattice analogous to the (111)
face of diamond. These surfaces are stable in vacuum and in Ar. Use of the well-
ordered (1 1 -A) surface for device fabrication yields excellent results, as might
now be expected in terms of first principles.

The next steps in this happy progression involve preparation of MCT ordered
epi-layers, and capture of the epi-layer with a well-defined insulating overlayer.
Work is continuing.

E. Ruthenium Electmdes for Hydmcarbon Fuel Cells
Potent catalysis by Ru electrodes has been reported by various workers.

Reported here (182) are studies of chemisorption, surface vibrational spectroscopy
and electrochemical reactivity at Ru(001 ) single-crystal electrode surfaces. Electro-
chemical oxidation of methane on these Ru electrode surfaces in aqueous
electrolytes was investigated. Influences of surface oxide and electrodeposited silver
on methane oxidation were explored. Immersion of Ru(001) into pure water at open
circuit forms a layer of adsorbed hydrous oxides having an ordered (2 x 2)
structure as measured by Auger spectroscopy and LEED. Anodization of Ru(001)
in IM HCIO 4 produces a disordered Ru O/OH film consisting of several atomic
layers. The HREELS spectrum of this O/OH layer exhibits Ru-O and O-H
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stretching bands, and the layer is not removed by subsequent electrolysis at
negative potentials. Various submonolayer and multiple-layer amounts of silver
were electrodeposited on Ru(001). A continuous film is formed, based upon
attenuation of the substrate Auger signal. The silver layer lacks long-range order,
as judged by LEED. Under the present conditions, namely Ru(001) single-crystal
surfaces with or without the O/OH and/or silver layers in aqueous electrolytes, the
faradaic current due to oxidation of methane is generally less than I PA/cm2 .

F. Non-Aqueous Solvents at Electrode Surfaces
Electrochemical studies at a carefully characterized Pt(lll) electrode

surface are yielding useful insights into atomic, ionic and molecular
electrochemistry at interfaces. Reported here are studies of the chemisorption of
the common polar aprotic solvent acetonitrile (CH3CN) at a Pt(lll) surface (194).
Electrosorption of CH 3CN under typical electrolytic conditions from CH 3CN
electrolytes, CH 3CN aqueous electrolytic solutions and CH 3CN vapor was
investigated by HREELS, AES, LEED, and linear potential scan cyclic voltammetry
(CV). The results indicate that a chemisorbed layer is formed from CH 3CN liquid,
vapor, and typical aqueous solutions. The chemisorbed layer: consists of a mixture
of species related to CH 3CN and acetamide (CH3CONH 2); contains about 0 = 0.15
molecules per surface Pt atom; is stable in vacuum and in solution over a wide
range of electrode potentials; is replaced only slowly by other strong adsorbates
such as iodide; and lacks long-range order in the absence of anions such as iodide.
Related studies are exploring ionic adsorption, organic molecular adsorption, and
electrodeposition of metallic monolayers.

G. Silicon Carbide Thin-Film Structure.
The structure of epitaxial p-SiC thin films grown on Si(100) has been

investigated by measuring Auger electron emission angular distributions over an
essentially complete hemisphere of angles of emission above the film surface (185).
The P-SiC films were grown by rapid thermal chemical vapor deposition (RTCVD),
in which the heated Si(100) surface was carbonized with propane. Auger emission
angular distributions were measured for carbon at 268 eV, and for silicon at 86 eV
and 1605 eV, allowing the thin film structure to be probed from the viewpoint of
each element. The Auger measurements probe the thin film structure to a depth of
several atomic layers. Each of the distributions displayed distinct, fourfold
symmetric features, demonstrating the crystalline character of the P-SiC films.
Comparison of the measured angular distributions with geometric projections and
simulations for the known P-SiC structure indicates that the films consist of
interspersed [100] crystalline domains (each domain having twofold symmetry),
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with 900 in-plane rotational orientations between domains. These findings are
consistent with STM observations of the outermost atomic layer. Crystalline SiC
thin-films are important for Air Force electronic circuitry, having exceptional
resistance to heat and ionizing radiation.

H. Implications of These Results
Voltammetric methods such as cyclic voltammetry, thin-layer

electrochemistry and the closely related procedures of chronoamperometry,
chronocoulometry, impedance measurements and other electrochemical (EC)
techniques continue to be the most sensitive of the surface science methods
applicable to smooth metal surfaces. There is presently no rival for the EC methods
when used to "fingerprint" an adsorbate, to develop a quantitative calibration of the
spectrum of a molecular or atomic layer, or to explore a charge-transfer process.

Auger spectroscopy has become an indispensable tool in connection with
practical studies of metallic and semiconducting surfaces, including electrodes.
Innovations which we have introduced recently have decreased the beam current
requirements to about 10 nA/mm 2, such that beam damage is seldom a factor.
Surface cleanliness is verifiable by AES to within ± 1% of an atomic layer in most
cases. Surface elemental composition is quantifiable to within the accuracy of
calibration, about ± 1% relative. Surface layer stoichiometries (excepting hydrogen)
are thus readily determinable. Packing densities (moles/cm 2) are accurately
measurable by AES.

HREELS excels for detection of surface hydrocarbons and most other
molecular species. Vibrational spectra are valuable clues to molecular identification
at surfaces. Surface bonding and molecular constitution are readily explored by
means of HREELS; resolution is moderate (60 cm"1) while sensitivity is
remarkable (about 0.001 monolayer in most cases). Frequency range spans both the
far and near IR (60 cm"1 to 5000 cm-1, routinely).

Surface IR is emerging as a versatile surface vibrational probe. Resolution
is better than 4 cmnf while sensitivity is beginning to rival that of HREELS with
our instrumentation. The path to another ten-fold improvement in IR signal/noise
ratio is straightforward during the next few months. IR has the advantages of
applicability at ambient pressure and in the presence of electrolytic solutions,
combined with complete molecular generality. As such IR is very sensitive to even
the most subtle variations of surface molecular structure due to electrode potential,
chemical conditions, or any other causes.

Angle-resolved Auger measurements are contributing to the fundamental
understanding of the interaction of electrons with atoms, ions, molecules and solids,
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and have longer-range potential applicability for probing surface structure at the
level of atoms, molecules, and perhaps even chemical bonds.

Surface-sensitive spectroscopy combined with surface electrochemistry has
powerful strengths for practical and fundamental characterization of solid surfaces.
While IR, STM and other ambient-pressure techniques are very valuable, the
electron diffraction and spectroscopic methods are also powerful, particularly for
the vastly numerous and important systems in which chemisorbed layers are formed
which are commonly found to be stable in vacuum. The connections among surface
electrochemistry, surface characterization, and surface/thin-film materials processing
in the electronics industry are very important for the future of clean manufacturing,
cluster tool development, technological competitiveness, and flexible manufacturing,
as illustrated by the MCT and SiC thin-film projects (168, 185).
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IV. CURRENT AND PENDING SUPPORT
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ARPA
"Infrared Sensor Devices".
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(10% of effort)
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"Electrochemistry of Metal Surfaces".
May 1, 1993 - April 30, 1996 $651,299
(10% of effort)


